AN ISO 9001 COMPANY

FLUE GAS DESULPHURISATION Advanced scrubber technologies

ABOUT PARAMOUNT

Paramount Pollution Control Limited is a multidisciplinary engineering & consultancy organisation engaged in turnkey projects in the field of Environmental Engineering & supply of pollution control Equipments & systems.

Paramount's team comprise of specialists & highly experienced engineers comprising of chemical, environmental, civil, mechanical, electrical, instrumentation & scientists at our R&D centre.

The name Paramount today stands for a `Total Environment Management Company'.

Paramount has two proven sources of accomplishments. One, the people, qualified resource that represent varied engineering faculties. Two, the R&D, the most advanced by any standard. This has enabled Paramount to handle turnkey assignments of any magnitude both in private as well as public sector. Through a continued emphasis on Research and Development, the company has made significant pioneering contributions in developing indigenous process know-how and in some cases these are first of the kind in the country. The areas of specialization include design and execution of plants & manufacturing of equipment/systems for treatment of water and wastewater, solid waste and control of air pollution.

For Air Pollution Control Systems, Flue Gas Desulphurisation (FGD) & Hazardous Waste Incineration Systems the company has the backup of a technical collaboration with ANDERSEN 2000 INC. USA who are internationally reputed leaders in Advance Emission Control Technology. A wide range of equipment choice is available to enable custom design of systems to meet individual needs in this area.

Paramount's contribution to Environmental Engineering has been significant for over 20 years now. Our R&D Centre has launched extensive research programmes for developing new processes on Water/Wastewater Treatment and Air Pollution Control. Paramount's R&D Centre (by far one of the largest in private sector) is equipped with most modern and versatile instruments and automatic analysers backed by a committed team of scientists.

EQUIPMENTS, SYSTEMS - APPLICATIONS

AIR POLLUTION CONTROL

Sulphur Dioxido Control	Power Plants	Sulphuric Acid Plants
And Double Alkeli	Utility Boilers	Cogeneration Plants
	Diesel Generators	Zinc /Lead/Copper Smelters
Wot & Dry Processos	Oil Fired Industrial Boilers	Molybdenum Ore Roasters
Absorption and	Oil fired Incinerators	Barium Sulphate Reduction Kilns
Absorption and Reconcretion Systems	Acid Gas Incinerators	Strontium Sulphate Reduction Kilns
Regeneration Systems	Chemical Plants	CO ₂ Recovery Plants
	Lime Kilns	Scrap Incinerators
	Bark and Hog Fuelled Boilers	Liquid Waste Incinerators
Fine Deutievlete Metter	Coal Fired Boilers	Sewage Sludge Incinerators
Fine Particulate Matter	Oil Fired Boilers	Coke Ovens
Venturi Serubbere	Cupolas	Fertilizer Plants
Venturi Scrubbers	Calciners and Kilns	Municipal Incinerators
	Paper Plant Recovery Boiler	Sintering Plants
	Electric Furnace Emissions	Cement Kilns
	Coal Dryers	Pathogenic Incinerators
	HCI Emissions	Pickling Operations
Gaseous Emissions	HF Emissions	HCN Emissions
Packed Bed Scrubbers	SO ₂ Emissions	Chlorine Gas Emissions
	H ₂ S Emissions	Bromine Emissions
	Laboratory Hoods	CO ₂ Scrubbing
	Asphalt Roofing Manufacture	Phenolic Resin Emissions
	Asphalt Pipe Coating	Sulphur Emissions
	Plasticizer Emissions	Organic Chemical Reactor Discharges
	Meat and Fish Smokehouses	Nylon Extrusion Emissions
	Fiber Glass Curing Ovens	Heat Treating Smoke
	Core Bake Ovens,	Commercial Food Frying Operations
Sticky and Oily	Polymeric Coating and Curing Ovens	Adhesive Curing Ovens for Tape
Barticulates Acrosols	Vegetable Oil Expellers and Extractors	Aluminium Foil Rolling
Minto	Floor Tile Manufacturing	Coffee/Cocoa Bean Roasting Emissions
WISIS HEAE TM Dry Eiltrotion	Scrap Metal Preheaters and Dryers	Peanut Roasting Emissions
Fauinmont	Tube and Wire Drawing Emissions	Hardboard Tempering Ovens
Lquipment	Plywood Veneer Dryers	Electroplating Aerosols
	Restaurant Broilers	Mobile Asphalt Kettles and Tankers
	Latex Dryers	Automobile Shredders
	Wire Coating and Curing	Drop Forge and Forge Press Emissions
	Electrode Manufacturing Emissions	Coal Gasification & Conversion
	Rubber Vulcanizing and Compounding	Mineral Wool Curing Ovens
	Pouring Foundries	
	Sulphuric Acid Mists	Soda Ash Calciners
	Phosphoric Acid Mists	Soda and Borosilicate Glass Furnaces
Submicron Particulate	Hydrochloric Acid Mists	Vacuum Pump Discharges
Matter	Nitric Acid Mists	Galvanizing Emissions
CHEAF [™] Wet Filtration	Detergent Manufacturing	Potassium Chloride Dryers
Equipment	Food and Flavouring Spray Dryers	Molten Salt Baths
	Ammonium Nitrate Prilling & Pelletizing	Electroplating Bath Emissions
	Compressed Air Filtration	Phosphorus Furnace Emissions
	Urea Prilling and Pelletizing	Process Gas Filtration
Dust and Large	Rock Crushers	Grinding and Polishing Emissions
Particulate Matter	Conveyor Transfer Points	Sand Shakeouts
Low Energy Scrubbers	Bucket Elevators	Asphalt Batch Plants
	Granulators	
	Rendering Plants	Foundry Odours
Odour Control	Organic Chemical Production	Breweries
Absorption Adsorption and	Pnenolic Emissions	wet Grain Milling and Drying
Chemical Treatment	Sewage Treatment Plants	Polymerizers
Systems	Sludge Dryers	Animal Feed Plants
	Hydrocarbon Emissions	Paint and Varnish Manufacturing
	Reduced Sulphur Compounds	Leather Lanning
	Poultry and Egg Production	

SULPHUR DIOXIDE REMOVAL

Paramount offers world famous and proven patented Sulphur dioxide scrubbing system with 95-99%+ sulphur dioxide removal. Unique feature worth mentioning is, the system works equally well on low and high inlet sulphur dioxide concentrations. Even with large variations in the inlet sulphur dioxide concentrations to the scrubbing system, the system produces an almost constant outlet sulphur dioxide concentrations. This characteristic of our scrubbing system is due to its operation in the "Concentrated absorption chemical mode". This system differs substantially from the other sulphur-dioxide removal processes.

The acting chemical in the scrubbing system is sodium sulfite. The concentration of dissolved solids in this system is maintained at a much higher level than other conventional system enabling the system to have low recirculated liquid flow rate to the scrubbing system and more sulphur dioxide capturing capacity per unit volume of scrubbing liquid. This characterizes in the reduction of recirculation system.

The scrubbing system uses "patented, non-plugging, low differential pressure Horizontal spray-baffle type scrubber."

Packaged SO₂ Scrubber for heavy oil fired boiler

"Though both horizontal and vertical versions are available, we recommend the horizontal unit which provides the greatest ease of operation and maintenance. This system can be combined with Venturi Scrubber if the gas stream has significant particulate matter.

HORIZONTAL SPRAY BAFFLE SO₂ SCRUBBER

SULPHUR DIOXIDE REMOVAL

Another **unique feature** of our scrubbing system is, it always operates in an *acidic mode*. When NaOH is added to the system as a make up reagent, it converts to sodium bisulphite back to sodium sulphite, rather than existing in the scrubbing solution as free sodium hydroxide. The same is true in case soda ash is used in place of NaOH.

Another common problem in conventional scrubbers is calcium scaling in the scrubber. The scaling magnitude is predominant in alkaline mode of operation as calcium precipitate as calcium carbonate and calcium sulfate causing severe scale formation in the scrubber. This scrubbing system operates on acidic mode of operation and even dramatic variations in sulphur dioxide concentration cannot take back the system to alkaline mode of operation thus calcium precipitation is practically avoided in this design of scrubbing system.

ADVANTAGES OF HORIZONTAL SPRAY BAFFLE SCRUBBER:

- 1. Proven & patented design of Andersen 2000 Inc. U.S.A
- 2. Comprise of maximum number of SO₂ scrubbers world wide based on this technology with over 500 installations
- 3. Horizontal configuration ensures ease of operation & maintenance due to reduced heights
- 4. Gas comes in contact with fresh scrubbing liquid at every stage (unlike other counter-current scrubber) which increase

View of Quench for SO₂ Scrubbers

- 7. Ability to handle high surges of SO₂ concentration with less effect on outlet SO₂ levels due to operation in concentrated mode
- 8. Can be designed to achieve even 1 ppm SO_2 at outlet for

APPLICATIONS

- Utility Boiler
- Diesel Generators
- Oil Fired Boiler/Furnaces
- Coal Fired Boilers
- Power Plants
- Copper/Zinc/Lead Smelters
- Cogeneration Plants
- Acid Gas Incinerators
- Oil Fired Incinerators
- Sulfuric Acid Plants
- Sulphide Ore Smelter
- Molybdenum Ore Roaster
- Barium Sulphate Reduction
- Co₂ Recovery Plants

DOUBLE ALKALI PROCESS

During scrubbing reaction, SO_2 reacts with sodium sulphite to form bisulphite, which then do not take further part in chemical reaction. Hence it needs regeneration or disposal.

In the Patented Double Alkali Process, Bleed stream (characteristics & quantity depend on flue gas characteristics, total SO_2 load, outlet So_2 emissions, etc.) from scrubber recirculation tank containing sodium sulfite, sodium bisulfite and sodium sulphate is reacted with lime under very specific operating conditions like pH, conductivity, mixing, reaction time etc. most

conducive for regeneration of caustic. The sodium bisulfite is thus regenerated chemically.

The calcium sulfite, calcium sulphate produced in the reaction are precipitated and withdrawn from the system. The bisulfite is converted back to sulfite. The regenerated liquid is then taken back to the scrubbing system. The regenerated sodium salts mostly offsets the need for new sodium salts. Gypsum can be produced as an option. The payback period for this system is generally less than a year.

DOUBLE ALKALI PROCESS FOR SULPHUR DIOXIDE REMOVAL

DOUBLE ALKALI PROCESS

SPRAY DRY - DOUBLE ALKALI PROCESS FOR SULPHUR DIOXIDE REMOVAL

UNIQUE FEATURES

Most proven & widely used process for sulfur dioxide systems.

Extremely low caustic consumption, almost 10% of stoichiometry or less.

No choking problems in scrubber as clean liquid is used for scrubbing.

No liquid waste (bleed) is generated

Eliminates complex liquid treatment facilities

Solids produced are safe for land fill. Gypsum can be produced as a by-product

Saves considerably on operating cost as it is viable for SO_2 loads beyond 1 T/Day.

Very low payback period

Reduces water consumption drastically.

FGD with Double Alkali Process at a Copper Smelter

NII,

)

Ś

UTILITIES & CHEMICALS

	Parameter	Lime/Limestone Scrubbing	Caustic Scrubbing	Double Alkali Process
	Chemical used	Lime / Limestone	NaOH	NaOH/Na₂CO₃ & Lime (CaO)
	Expected Chemical consumption	1.3 kg/kg of SO ₂ removed for lime /1.8 kg/kg of SO ₂ removed for limestone	NaOH : 1.2 kg/kg of SO ₂ removed	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
	Water consumption	High due to excesslime carry over in sludge which is lost in cake	High as water is lost in bleed	Low as no carry over of lime in sludge and treated bleed is recycled
)	Optimum use of chemicals	Higher than stoichiometric as bleed contains unreacted lime.	Higher than stoichiometric as bleed contains unreacted caustic	Most Optimum as system operates in acidic or at neutral pH
-	Power consumption	High due to high recirculation rates and high pressure drop	Low due to low recirculation rates & low pressure drop	Low due to low recirculation rates & low pressure drop

OPERATING PARAMETERS			
Parameter	Lime/Limestone Scrubbing	Caustic Scrubbing	Double Alkali Process
Achievable Efficiency of SO ₂ removal	85-90 %	95-99% +	95-99% +
System availability	80-87%	95-98%	95-98%
Operating pH	8.5-10.5	8.5-10.5	6.9-7.0
Quantity of recirculating liquid (L/G Ratio)	10 to 14 m ³ /1000 m ³ of gas for 85-90 % removal efficiency	2.6-3.0 & 4.5-6.0 m ³ /1000 m ³ of gas for 95 & 99+ % removal efficiency	2.6-3.0 & 4.5-6.0 m ³ /1000 m ³ of gas for 95 & 99+ % removal efficiency
Pressure drop	High	Low	Low

OPERATION & MAINTENANCE			
Parameter	Lime/Limestone Scrubbing	Caustic Scrubbing	Double Alkali Process
Consistency in maintaining outlet emission levels	Low	Very high	Very high
Capacity to handle surges of high SO_2 load at inlet without major effect on outlet SO_2 emission	Low due to low reactivity of lime/ limestone.	High	High. (due to operation of scrubbing system in concentrated mode resulting in high buffer capacity of scrubbing liquid)
Scaling in scrubber	Extremely high	Low	Practically Nil as it operates in acidic mode
Requirement of Spares for maintenance	High due to erosion & plugging	Low	Low
Size of scrubber	High	Low	Low due to higher mass transfer coefficient

END PRODUCTS			
Parameter	Lime/Limestone Scrubbing	Caustic Scrubbing	Double Alkali Process
Quantity of solids	Very high due to excess lime carry over in sludge	Not applicable as bleed needs elaborate special treatment before it is disposed	Low as no excess carry over of lime
Quality of solids	Poor due to presence of excess lime carry over in bleed liquor	Not applicable	Good as no carry over of lime in bleed liquor

TYPICAL FGD APPLICATIONS

 \mathcal{C}

1.

ACID GAS INCINERATOR

HEAVY OIL FIRED FURNACE

<image>

FGD with Double Alkali Process at a Copper Smelter

TYPICAL FGD-APPLICATIONS

FGD with Double Alkali Process at a 100 MW Power Plant

View of a large FGD unit with FRP Scrubber

SO₂ Scrubbers for utility boilers burning high sulphur fuel

AIR POLLUTION CONTROL APPLICATIONS

RECIRCULATION

AIR POLLUTION CONTROL APPLICATIONS

Rotary Kiln Incinerator plant with Particulate/ SO₂/Hcl Scrubbers

Incinerator Scrubber with Venturi and Packed Tower

SO₂ Scrubbers for Sulphuric Acid Plants

Acid Gas Incinerator with Double Alkali Process

HIGH EFFICIENCY AIR FILTER, HEAFTM

For Sticky and Oily Particulates, Aerosols and Mists

High Efficiency Air Filtration devices, manufactured under trademark of HEAF[™], include four different types.

These units are the Mini- HEAFTM, the stationary Drum HEAFTM, the Flat-Bed HEAFTM, and the Rotary Drum HEAFTM. The Mini-HEAFTM, is used for small air pollution sources, and uses a manually changed cartridge filter for the capture of air pollutants. The stationary drum HEAFTM is used only for pressurized gas stream where fully automatic operation is required.

The Flat-Bed HEAFTM uses roll type filters for moderate gas flows, and is fully automatic in operation. The Rotary Drum HEAFTM unit is a fully automatic filter used for individual emission control applications upto 2,00,000m³/hr in a single unit.

 HEAF^{TM} units are used to control emissions from sources where fabric filters cannot be used, because they plug up with sticky or viscous particulate materials, where wet scrubbers require excessive energy consumption because of extremely

Rotary Drum HEAF[™] Unit for Plasticizer operation

For Submicron Particulate Matter

The cleanable High Efficiency Air Filtration device, manufactured under the trade mark of $CHEAF^{TM}$ is a wet collector system which uses either a polymeric, metallic or glass fibre filtration mat to remove submicron particulate matter from exhaust gas streams. For many applications, the $CHEAF^{TM}$, unit offers substantially reduced energy consumption over that required for a venturi scrubber on the same application. The $CHEAF^{TM}$ can be used on most particulate matter which is not sticky or viscous and which does not deposit scale on the filter mat.

The two different types of CHEAFTM are the fully cleanable type and the renewable media type. Fully cleanable CHEAFTM units can be used on dust emissions in the mineral and mining industries, on inorganic chemicals, dryers and calciners, and on prill tower emissions, and in manufacture of ammonium nitrate and urea. They can also be used for spray dryer emissions in the food products and flavoring industries and the perfume manufacturing industries.

Typical configuration of a cleanable CHEAFTM and a flow sheet for use of CHEAFTM for emission control system for Urea Plant Prill Tower are shown.

 $CHEAF^{TM}$ units can be built of virtually any engineering material which include stainless steel, plastic, FRP, rubber lined steel and mild steel.

Single units can be built to handle gas flows upto $6,80,000 \text{ m}^3/\text{hr}.$

Paramount Complex, Gotri Road, Race Course, Baroda - 390 007 Phones : 2397111 (7 Lines) Fax : (0265) 2398251 E-mail : sales@paramountlimited.com Website : www.paramountlimited.com

Mumbai

B-302, Champaklal Industrial Estate, 105, Sion (East), Mumbai - 400 022 Ph. : 022-4073108 / 4078105 Fax : 022-4078106 E-mail : paramountmumbai@vsnl.com

Branch Offices

Delhi

B-1/26/1 Safdarjung Enclave, New Delhi -100 029 Ph. : 011-6186525 Fax : 011-6186369 E-mail : ppcldli@bol.net.in

Chennai

O.P. Building, Mount Road, Chennai-600 035 Ph. : 044-4328924 Fax : 044-4330706 E-mail : mparamount@vsnl.net